Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Rare earth elements (REE) in calcium apatite have been widely described in the literature. Based on the investigations of minerals and their synthetic analogs, the mechanism of substitution of REE3+ for Ca2+ and their structural positions are well established. Although the presence of REE in natural pyromorphite has been reported, the structural response of substitution of REE3+ for Pb2+ is not established. A better understanding of REE-rich Pb-apatite may facilitate the potential use of this mineral in industrial processes. Two La-doped pyromorphite analogs [Pb5(PO4)3Cl] and two control pyromorphite analogs (with the absence of La) were synthesized from aqueous solutions at 25 °C. Na+ and K+ were used as charge-compensating ions to facilitate the incorporation of trivalent REE cations (La3+ + Na+ ↔ 2Pb2+ and La3+ + K+ ↔ 2Pb2+). Microprobe analysis, scanning electron microscopy, and Raman spectroscopy were used to confirm the purity of obtained phases. High-precision crystal structure refinements (R1 = 0.0140–0.0225) of all four compounds were performed from single-crystal X-ray diffraction data. The La content varied from 0.12(1) to 0.19(1) atoms per formula unit with the counter ions of K+ and Na+, respectively. Both substituting ions were accommodated at the Pb1 site only. By comparing the La-doped pyromorphite analogs with their control samples, it was possible to detect small changes in bond distances and polyhedral volumes caused by the La substitution. Variations in individual and mean interatomic distances reflected the cumulative effect of both the amount of substitution and ionic radii of substituting ions (La3+, Na+, and K+).more » « less
-
Abstract Quartz‐in‐garnet inclusion barometry integrated with trace element thermometry and calculated phase relations is applied to mylonitized schists of the Pinkie unit cropping out on the island of Prins Karls Forland, western part of the Svalbard Archipelago. This approach combines conventional and novel techniques and allows deciphering of the pressure–temperature (P–T) evolution of mylonitic rocks, for which theP–Tconditions could not have been easily deciphered using traditional methods. The results obtained suggest that rocks of the Pinkie unit were metamorphosed under amphibolite facies conditions at 8–10 kbar and 560–630°C and mylonitized at ~500 to 550°C and 9–11 kbar. TheP–Tresults are coupled with in‐situ Th–U‐total Pb monazite dating, which records amphibolite facies metamorphism atc.359–355 Ma. This is the very first evidence of late Devonian–early Carboniferous metamorphism in Svalbard and it implies that the Ellesmerian Orogeny on Svalbard was associated with metamorphism up to amphibolite facies conditions. Thus, it can be concluded that the Ellesmerian collision between the Franklinian margin of Laurentia and Pearya and Svalbard caused not only commonly accepted brittle deformation and weak greenschist facies metamorphism, but also a burial and deformation of rock complexes at much greater depths at elevated temperatures.more » « less
An official website of the United States government
